An empirical comparison
of
C, C++, Java,
Perl, Python, Rexx, and Tcl
for a
search/string-processing program

Lutz Prechelt (prechelt@ira.uka.de)
Fakultat fr Informatik
Universitat Karlsruhe

D-76128 Karlsruhe, Germany
+49/721/608-4068, Fax: +49/721/608-7343
http://wwwipd.ira.uka.de/EIR/

Technical Report 2000-5
March 10, 2000

Abstract

80 implementations of the same set of requirements, created by 74 different programmersin vari-
ouslanguages, are compared for several properties, such asrun time, memory consumption, source
text length, comment density, program structure, reliability, and the amount of effort required for
writing them. Theresultsindicate that, for the given programming problem, “ scripting languages”
(Perl, Python, Rexx, Tcl) are more productive than conventional languages. In terms of run time
and memory consumption, they often turn out better than Java and not much worse than C or C++.
In general, the differences between languages tend to be smaller than the typical differences dueto
different programmers within the same language.



2 CONTENTS
Contents

1 Onlanguage comparisons 3

2 Origin of the programs 3

2.1 Non-scriptgroup: C, CH+,Java. . . . . . o e e 4

2.2 Script group: Perl, Python, Rexx, Tcl . . . . . . . . . . . . 4

3 Validity: Arethese programscompar able? 4

3.1 Programmer capabilities . . . . . . .. e 4

32 WorktimereportingaCCuracy . . . . . . . v i e e e e 5

3.3 Different task and different work conditions . . . . . .. ... ... ... . o L. 5

34 Handlingamisunderstoodrequirement . . . . . . . . ... 6

35 Otherissues . . . . . . . e 7

3.6 SUMMAY . . . . e e 7

4 The programming problem: phonecode 7

4.1 Theproceduredescription . . . . . . . . . . e e 8

4.2 TaskrequirementSdesCcription . . . . . . . . . . ... e 9

43 Thehint . . . . . . e 11

5 Results 12

51 Plotsand dtatisticalmethods . . . . . . . . . ... 12

52 Numberof programs . . . . . . . . ... e 13

53 RUNtIME. . . . . . 13

531 Total: z1000dataset . . . . . . ... 13

5.3.2 Initidizationphaseonly: zZ0dataset . . . . .. ... ... ... ... .. ... .... 15

533 Searchphaseonly . ... ... . . . . ... . 16

54 Memory consumption . . . . . . . ... e e e e 17

5.5 Programlength and amount of commenting . . . . . . . .. ... ... ... . . . ... 18

56 Programreliability . . . . . . .. 19

57 Worktime . . . . . o 21

571 Data. . . . . . e e e e 21

572 vdidation . . . ... 22

573 Conclusion . . . . . . 24

5.8 Programstructure . . . . . . . L e e e e 25

59 Testingtworulesofthumb . . . . . . .. .. .. . .. 25

510 Programmer self-rating . . . . . . . . . .. 27

6 Conclusions 28

A Raw data 29

B Specification ambiguities 31

Bibliography 33



1 On language comparisons

When it comes to the pros and cons of various programming languages, programmers and computer scientists
alike are usualy highly opinionated. In contrast, only relatively little high-quality objective information is
available about the relative merits of different languages. The scientific and engineering literature provides
many comparisons of programming languages — in different ways and with different restrictions:

Some are purely theoretical discussions of certain language constructs. The many examples range from Dijk-
stra’'s famous letter “Go To statement considered harmful” [6] to comprehensive surveys of many languages
[4, 16]. These are non-quantitative and usually partly speculative. Some such works are more or less pure
Oopinion-pieces.

Some are benchmarks comparing a single implementation of a certain program in either language for expres-
siveness or resource consumption, etc.; an exampleis[10]. Such comparisons are useful, but extremely narrow
and hence always dightly dubious: Is each of the implementations adequate? Or could it have been done much
better in the given language? Furthermore, the programs compared in this manner are sometimes extremely
small and simple.

Some are narrow controlled experiments, e.g. [7, 14], often focusing on either asingle language construct, e.g.
[13, p.227], or awhole notationa style, e.g. [13, p.121], [18].

Some are empirical comparisons based on several and larger programs, e.g. [9]. They discuss for instance
defect rates or productivity figures. The problem of these comparisonsislack of homogeneity: Each language
is represented by different programs and it is unclear what fraction of the differences (or lack of differences)
originates from the languages as such and what fraction is due to different programmer backgrounds, different
software processes, different application domains, different design structures, etc.

The present work provides some objective information comparing several languages, namely C, C++, Java,
Perl, Python, Rexx, and Tcl. It has the following features:

e The same program (i.e. an implementation of the same set of requirements) is considered for each
language. Hence, the comparison is narrow but homogeneous.

e For each language, we analyze not a single implementation of the program but a number of separate
implementations by different programmers. Such a group-wise comparison has two advantages. First, it
smoothes out the differences between individua programmers (which threaten the validity of any com-
parison based on just one implementation per language). Second, it alows to assess and compare the
variability of program propertiesinduced by the different languages.

e Severa different aspects are investigated, such as program length, amount of commenting, run time
efficiency, memory consumption, and reliability.

2 Origin of the programs

The programs analyzed in this report come from two different sources. The Java, C, and C++ programs were
produced in the course of a controlled experiment, the others were produced under less well understood condi-
tions and were submitted by Email.

The programming task was a program (called phonecode) that maps tel ephone numbers into strings of words
according to a given dictionary and a fixed digit-to-character encoding. It will be described in Section 4.



4 3 VALIDITY: ARE THESE PROGRAMS COMPARABLE?

2.1 Non-script group: C, C++, Java

All C, C++, and Java programs were produced in 1997/1998 during a controlled experiment comparing the
behavior of programmers with and without previous PSP (Personal Software Process[11]) training. All of the
subjects were Computer Science master students. They chose their programming language freely. The subjects
weretold that their main goal should be producing a correct (defect-free) program. A high degree of correctness
was ensured by an acceptance test. The sample of programs used here comprises only those that passed the
acceptance test. Several subjects decided to give up after zero, one, or several attempts at passing this test.

Detailed information about the subjects, the experimental procedure, etc. can be found in [17].

2.2 Script group: Perl, Python, Rexx, Tcl

The Perl, Python, Rexx, and Tcl programs were all submitted in late 1999 by volunteers after | had
posted a “Call for Programs’ on several Usenet newsgroups (comp.lang.perl.misc, de.comp.lang.perl.misc,
comp.lang.rexx, comp.lang.tcl, comp.lang.tcl.announce, comp.lang.python, comp.lang.python.announce) and
one mailing list (called “Fun with Perl”, fwp@technofile.org).

For four weeks after that call, the requirements description and test data were posted on a website for viewing
and download. The participants were told to develop the program, test it, and submit it by email. There was no
registration and | have no way of knowing how many participants started to write the program but gave up.

Detailed information about the submission procedure can be found in Section 4.

For brevity (and for brevity only), | will often refer to this set of languages (Perl, Python, Rexx, Tcl) as
script languages and to the respective programs as scripts. The other three languages (C, C++, Java) will
correspondingly be called non-script languages, the programs as non-scripts

3 Validity: Arethese programscomparable?

The rather different conditions under which these programs were produced raise an important question: Is it
fair to compare these programs to one another or would such a comparison say more about the circumstances
than it would say about the programs? Put differently: Is our comparison valid? The following subsections
discuss problems that threaten the validity. The most important threats usually occur between the language
groups script and non-script; a few caveats when comparing one particular script language to another or one
non-script language to another also exist and will be discussed where necessary.

3.1 Programmer capabilities

The average capabilities of the programmers may differ from one language to the other.

It is plausible that the Call for Programs has attracted only fairly competent programmers and hence the script
programs reflect higher average programmer capabilities than the non-script programs. However, two observa-
tions make me estimate this difference to be small. First, with some exceptions, the students who created the
non-script programs were also quite capable and experienced (see [17]). Second, some of the script program-
mers have described themselves as follows:

“Most of the time was spent learning the language not solving the problem.”
“Things| learned: [...] Use alanguage you really know.”



3.2 Work time reporting accuracy 5

“First real gpplication in python.”

“It was only my 4th or 5th Python script.”

“I’m not a programmer but a system administrator.”

“I’masocial scientist.”

“I am a VLSl designer (not a programmer) and my algorithms/coding-style may reflect this.”
“Thisismy first Tcl prog. I’'m average intelligence, but tend to work hard.”

“Insight: Think before you code. [...] A lot of time was lost on testing and optimising the bad
approach.”

Taken together, | expect that the script and non-script programmer populations are roughly comparable — at
least if we ignore the worst few from the non-script group, because their would-be counterparts in the script
group have probably given up and not submitted a program at al. Let’'s keep thisin mind for the interpretation
of the results below.

Within the language groups, some modest differences between languages al so occurred: 1nthe non-script group,
the Java programmerstend to be less experienced than the C and C++ programmersfor two reasons. First, most
of the noticeably most capable subjects chose C or C++, and second, nobody could have many years of Java
experience at the time, because the experiment was conducted in 1997 and 1998, when Java was still fairly
young.

In the script group, my personal impression is that the Perl subjects tended to be more capable than the others.
The reasons may be that the Perl language appears to irradiate a strange attraction to highly capable program-
ming fans and that the “fun with Perl” mailing list on which | posted the call for programs appears to reach a
particularly high fraction of such persons.

3.2 Work timereporting accuracy

The work times reported by the script programmers may be inaccurate.

In contrast to the non-script programs from the controlled experiment, for which we know the real programming
time accurately, nothing kept the script programmers from “rounding down” the working times they reported
when they submitted their program. Some of them also reported they had had to estimate their time, as either
they did not keep track of it during the actual programming work or they were mixing too much with other tasks
(“many breaks to change diapers, watch the X-files, etc.”). In particular, some apparently read the requirements
days before they actually started implementing the solution asisillustrated by the following quotes:

“Design: In my subconscious for a few days”

“The total time does not include the two weeks between reading the requirements and starting to
design/code/test, during which my subconscious may have already worked on the solution”

“The actual time spent pondering the design is a bit indeterminate, as | was often doing other things
(eating cheese on toast, peering through the snow, etc).”

However, there is evidence (described in Section 5.7) that at least on the average the work times reported are

reasonably accurate for the script group, too: The old rule of thumb, saying the number of lines written per
hour isindependent of the language, holds fairly well across al languages.

3.3 Different task and different work conditions

The requirements statement, material's provided, work conditions, and submission procedure were different for
the script versus non-script group.



6 3 VALIDITY: ARE THESE PROGRAMS COMPARABLE?

The requirements statement given to both the non-script and the script programmers said that correctness was
the most important aspect for their task. However, the announcement posted for the script programmers (al-
though not the requirements description) also made a broader assignment, mentioning programming effort,
program length, program readability/modularization/maintainability, elegance of the solution, memory con-
sumption, and run time consumption as criteria on which the programs might be judged.

This focus difference may have directed somewhat more energy towards producing an efficient program in
the script group compared to the non-script group. On the other hand, two things will have dampened this
difference. First, the script group participants were explicitly told “Please do not over-optimize your program.
Deliver your first reasonable solution”. Second, in the non-script group highly inefficient programswerefiltered
out and sent back for optimization in the acceptance test, because the test imposed both a time and memory
limit! not present in the submission procedure of the script group.

There was another difference regarding the acceptance test and reliability measurement procedures. Both
groups were given a small dictionary (test.w, 23 words) and a small file of inputs (test.t) and correct out-
puts (test.out) for program development and initial testing, plus a large dictionary (woerter2, 73113 words).
The acceptance test for the non-script group was then performed using a randomly created input file (different
each time) and a medium-large dictionary of 20946 words. A failed acceptance test cost a deduction of 10
Deutschmarksfrom the overall compensation paid for successful participation in the experiment, which was 50
Deutschmarks (about 30 US Dallars).

In contrast, the script group was given both the input file z1000.in and the corresponding correct outputs
z1000.o0ut that are used for reliability measurement in this report and could perform as many tests on these
data as they pleased.

Possessing these dataiis arguably an advantage for the script group with respect to thework timerequired. (Note
that the acceptance test in the non-script group automatically flagged and reported any mistakes separately while
the script group had to perform the comparison of correct output and actual output themselves. The web page
mentioned that the Unix utilities sort and diff could be used for automating this comparison.)

A more serious problem is probably the different working regime: As mentioned above, many of the script
group participants thought about the solution for several days before actually producing it, whereas the non-
script participants all started to work on the solution right after reading the requirements. Thisis probably an
advantage for the script group. However, for more than two thirds of the non-script group one or several longer
work breaks (for the night or even for several days) occurred aswell.

Summing up we might say that the tasks of the two groups are reasonably similar, but any specific comparison
must clearly be taken with agrain of salt. There was probably some advantage for the script group with respect
to work conditions: some of them used unmeasured thinking time before the actual implementation work.
Hence, only severe results differences should be relied upon.

3.4 Handling a misunderstood requirement

There was one important statement in the requirements that about one third of all programmersin both groups
misunderstood at first (see Section 4.3), resulting in anincorrect program. Since only few of these programmers
were able to resolve the problem themselves, help was required. This help was provided to the non-script
programmers as follows: When they failed an acceptance test due to this problem, the respective sentence in
the regquirements was pointed out to them with the advice of reading it extremely carefully. If they till did
not find the problem and approached the experimenter for further help, the misunderstanding was explained to
them. All of these programmers were then able to resolve the problem. In most cases, correcting the mistake
in afaulty program wastrivial.

164 MB total, 30 seconds maximum per output plus 5 minutes for loading on a 143 MHz Sparc Ultral.



3.5 Other issues 7

For the script programmers, no such interaction was possible, hence the requirements description posted on
the web contained a pointer to a “hint”, with the direction to first re-read the requirements carefully and open
the hint only if the problem could not be resolved otherwise. The exact wording and organization is shown in
Section 4 below.

The easier access to the hint may have produced an advantage (with respect to work time) for the script-group,
but it is hard to say whether or to which extent this has happened. On the other hand, a few members of the
script group had a hard time understanding the actual formulation of the hint. My personal impression based
on my observations of the non-script group and on the feedback | have received from participants of the script
group isthat the typical work time penalty for misunderstanding this requirement was similar in the script and
non-script group.

3.5 Other issues

The non-script programmers had a further slight disadvantage, because they were forced to implement on a
particular computer. However, they did not complain that this was a major problem for them. The script
programmers used their own machine and programming environment.

The Rexx programs may experience asmall disadvantage because the platform on which they will be evaluated
(a Rexx implementation called “Regina’) is not the platform on which they were originally developed. The
Java programs were evaluated using a much newer version of the JDK (Java Development Kit) than the one
they were originally developed with. These context changes are probably not of major importance, though.

3.6 Summary

Overdl, it is probably fair to say that

e duetothedesign of the data collection, the datafor the script groupswill reflect several relevant (although
modest) a-priori advantages compared to the data for the non-script groups and

o therearelikely to be some modest differencesin the average programmer capability between any two of
the languages.

Due to these threats to validity, we should discount small differences between any of the languages, as these
might be based on weaknesses of the data. Large differences, however, are likely to be valid.

4 The programming problem: phonecode

The problem solved by the participants of this study (i.e. the authors of the programs investigated here) was
called phonecode

The exact problem description given to the subjects in the non-script group is printed in the appendix of [17].
The following subsections reproduce the description given on the web page for the participants of the script
group. It is equivalent with respect to the functional requirements of the program, but different with respect to
the submission procedure etc.

Underlined parts of the text were hyperlinksin the origina web page.



8 4 THE PROGRAMMING PROBLEM: PHONECODE

4.1 Theprocedure description

(First few paragraphsleft out)
The purpose of this website s collecting many implementations of this same program in scripting languages for comparing
these languages with each other and with the ones mentioned above. The languagesin question are

o Perl

e Python

o Rexx

e Tcl

The properties of interest for the comparison are

e programming effort

e program length

e program readability/modul arizatior/maintainability
e elegance of the solution

e memory consumption

e run time consumption

e correctness/robustness

I nterested?

If you are interested in participating in this study, please create your own implementation of the Phonecode program (as
described below) and send it to me by email.

I will collect programsuntil December 18, 1999. After that date, | will evaluate all programs and send you the results.

The effort involved in implementing phonecode depends on how many mistakes you make underways. In the previous
experiment, very good programmers typically finished in about 3 to 4 hours, average ones typically take about 6 to 12
hours. If anything went badly wrong, it took much longer, of course; the original experiment saw times over 20 hours for
about 10 percent of the participants. On the other hand, the problem should be much easier to do in a scripting language
compared to Java/C/C++, so you can expect much less effort than indicated above.

Still interested?

Great! The procedureis as follows:

1. Read the task description for the “phonecode” benchmark. This describes what the program should do.
2. Download

e the small test dictionary test.w,

o thesmall test input file test.t,

¢ the corresponding correct results test.out,

o theredl dictionary woerter2,

e a1000-input file z1000.t,

e the corresponding correct results z1000.out,

e orall of the above together in asingle zip file.

3. Fetch this program header, fill it in, convert it to the appropriate comment syntax for your language, and use it as
the basis of your program file.



4.2 Task requirements description 9

4. Implement the program, using only a singlefile.
(Make sure you measure the time you take separately for design, coding and testing/debugging.) Once running,
test it using test.w;, test.t, test.out only, until it works for this data. Then and only then start testing it using woerter2,
z1000.t, z1000.oLt.
This restriction is necessary because a similar ordering was imposed on the subjects of the original experiment as
well — however, it is not helpful to use the large data earlier, anyway.

5. A note on testing:

e Make sure your program works correctly. When fed with woerter2 and z1000.t it must produce the contents
of z1000.out (except for the ordering of the outputs). To compare your actual output to z1000.out, sort both
and compare line by line (using diff, for example).

o If you find any differences, but are convinced that your program is correct and z1000.out is wrong with
respect to the task description, then re-read the task description very carefully. Many people misunderstand
one particular point.

(I absolutely guarantee that z1000.out is appropriate for the given requirements.)
If (and only if!) you still don’t find your problem after re-reading the requirements very carefully, then read
this hint.

6. Submit your program by email to prechelt@ira.uka.de, using Subject: phonecode submission and preferably
inserting your program as plain text (but watch out so that your email software does not insert additional line
breaks!)

7. Thank you!

Constraints

e Please make sure your program runs on Perl 5.003, Python 1.5.2, Tcl 8.0.2, or Rexx as of Regina 0.08g, respec-
tively. It will be executed on a Solaris platform (SunOS 5.7), running on a Sun Ultra-11, but should be platform-
independent.

e Please use only a single source program file, not several files, and give that file the name phonecode.xx (where xx
is whatever suffix is common for your programming language).

e Please do not over-optimize your program. Deliver your first reasonable solution.
o Please be honest with the work time that you report; there is no point in cheating.

e Please design and implement the solution alone. If you cooperate with somebody else, the comparison will be
distorted.

4.2 Task requirementsdescription

Consider the following mapping from letters to digits:

E|IJNQ|RWX | DSY|FT|AM|CIV|BKU|LOP| GHZ
e| jng | rwx dsy | ft | am | civ | bku | lop | ghz
0 1 2 3 4 5 6 7 8 9

We want to use this mapping for encoding telephone numbers by words, so that it becomes easier to remember the
numbers.

Functional requirements

Your task iswriting a program that finds, for a given phone number, all possible encodings by words, and prints them. A
phone number is an arbitrary(!) string of dashes (- ), slashes (I ) and digits. The dashes and slashes will not be encoded.
The words are taken from a dictionary which is given as an alphabetically sorted ASCI| file (one word per line).

Only exactly each encoding that is possible from this dictionary and that matches the phone number exactly shall be
printed. Thus, possibly nothing is printed at all. The words in the dictionary contain letters (capital or small, but the



10 4 THE PROGRAMMING PROBLEM: PHONECODE

differenceisignored in the sorting), dashes (- ) and double quotes (" ). For the encoding only the letters are used, but the
words must be printed in exactly the form given in the dictionary. L eading non-letters do not occur in the dictionary.

Encodings of phone numbers can consist of a single word or of multiple words separated by spaces. The encodings are
built word by word from left to right. If and only if at a particular point no word at all from the dictionary can be inserted,
a single digit from the phone number can be copied to the encoding instead. Two subsequent digits are never allowed,
though. To put it differently: In apartial encoding that currently coversk digits, digit k + 1 is encoded by itself if and only
if, first, digit k was not encoded by a digit and, second, there is no word in the dictionary that can be used in the encoding
Starting at digitk + 1.

Your program must work on a series of phone numbers; for each encoding that it finds, it must print the phone number
followed by a colon, asingle(!) space, and the encoding on one line; trailing spaces are not allowed.

All remaining ambiguities in this specification will be resolved by the following example. (Still remaining ambiguities
are intended degrees of freedom.)

Dictionary (infilet est . w):

an
bl au
Bo"
Boot
bo"s
da
Fee
fern
Fest
fort
je

j emand
mr

M x

M xer
Name
neu
o"d
Ot

o)

Tor
Tor f
Wasser

Phone number list (infilet est . t ):

112

5624-82

4824

0721/ 608- 4067
10/ 783--5
1078-913-5
381482

04824

Program start command:

phonecode test.wtest.t

Corresponding correct program output (on screen):



4.3 Thehint 11

5624-82: mr Tor
5624-82: M x Tor

4824: Torf

4824: fort

4824: Tor 4

10/ 783--5: neu 0o"d 5
10/ 783--5: je bo"s 5

10/ 783--5: je Bo" da
381482: so 1 Tor
04824: 0 Torf

04824: 0 fort

04824: 0 Tor 4

Any other output would be wrong (except for different ordering of the lines).

Wrong outputs for the above example would be e.g.

562482: M x Tor , because the formatting of the phone number is incorrect,

10/ 783--5: je bos 5, becausethe formatting of the second word is incorrect,

4824: 4 Ot, becausein place of thefirst digit thewordsTor f, fort, Tor couldbe used,
1078-913-5: je Bo" 9 1 da , sincethere aretwo subsequent digits in the encoding,
04824: 0 Tor , becausethe encoding does not cover the whole phone number, and
5624-82: mr Torf |, becausethe encoding islonger than the phone number.

The above data are available to you in the filest est . w (dictionary), t est . t (telephone numbers) andt est . out
(program outpuit).

Quantitative requirements

Length of the individual words in the dictionary: 50 characters maximum.
Number of words in the dictionary: 75000 maximum

Length of the phone numbers: 50 characters maximum.

Number of entries in the phone number file: unlimited.

Quality requirements

Work as carefully as you would as a professional software engineer and deliver a correspondingly high grade program.
Specifically, thoroughly comment your source code (design ideas etc.).

The focus during program construction shall be on correctness. Generate exactly the right output format right from
the start. Do not generate additional output. | will automatically test your program with hundreds of thousands of phone
numbers and it should not make a single mistake, if possible — in particular it must not crash. Take yourself as much
time as is required to ensure correctness.

Your program must berun timeefficient in sofar that it analyzesonly avery small fraction of all dictionary entries
in each word appending step. It should also be memory efficient in that it does not use 75000 times 50 bytes for storing
thedictionary if that contains many much shorter words. The dictionary must be read into main memory entirely, but you
must not do the same with the phone number file, as that may be arbitrarily large.

Your program need not be robust against incorrect formats of the dictionary file or the phone number file.

4.3 Thehint

The“hint” referred to in the procedure description shown in Section 4.1 actually refersto afile containing only
the following:

Hint

Please do not read this hint during preparation.



12 5 RESULTS

Read it only if you really cannot find out what is wrong with your program and why its output does not conform to
z1000.out although you think the program must be correct.

If, and only if, you arein that situation now, read the actual hint.

Thelink refersto the following file:
Hint

If your program finds a superset of the encodings shown in z1000.out, you have probably met the following pitfall.

Many people first misunderstand the requirements with respect to the insertion of digits as follows. They insert a digit
even if they have inserted a word at some point, but could then not complete the encoding up to the end of the phone
number. That is, they use backtracking.

Thisisincorrect. Encodings must be built step-by-step strictly from left to right; the decision whether to insert a digit or
not is made at some point and, once made, must never be changed.

Sorry for the confusion. The original test had this ambiguity and to be able to compare the new work times with the old
ones, the spec must remain asis. If you ran into this problem, please report the time you spent finding and repairing; put
the number of minutes in the 'special events' section of the program header comment. Thanks alot!

5 Reaults

The programs were evaluated using the same dictionary woerter2 as given to the participants. Three different
input files were used: 1000 contains 1000 non-empty random phone numbers, m1000 contains 1000 arbitrary
random phone numbers (with empty ones allowed), and zO contains no phone number at all (for measuring
dictionary load time alone).

Extremely slow programs were stopped after a timeout of 2 minutes per output plus 20 minutes for loading
the dictionary — three quarters of al programs finished the whole z1000 run with 262 outputs in less than 2
minutes!

5.1 Plotsand statistical methods

The plots and statistical methods used in the evaluation are described in some detail in [17]; we only give a
short description here.

The main evaluation tool will be the multiple boxplot display, see for example Figure 2 on page 14. Each of
the “lines” represents one subset of data, as named on the |eft. Each small circle stands for one individua data
value. The rest of the plot provides visual aids for the comparison of two or more such subsets of data. The
shaded box indicates the range of the middle half of the data, that is, from the first quartile (25% quantile) to
the third quartile (75% quantile). The “whiskers’ to the left and right of the box indicate the bottom and top
10% of the data, respectively. Thefat dot within the box isthe median (50% quantile). The“M” and the dashed
line around it indicate the arithmetic mean and plus/minus one standard error of the mean.

Most interesting observations can easily be made directly in these plots. For quantifying some of them, | will
also sometimes provide theresults of statistical tests: Medians are compared using the Wilcoxon Rank Sum Test
(Mann-Whitney U-Test) and in afew cases means will be compared using the t-Test. All tests are performed
one-sided and all test results will be reported as p-values, that is, the probability that the observed differences
between the samples are only accidental and no difference (or a difference in the opposite direction) between
the underlying popul ations does indeed exist.



5.2 Number of programs 13

Table 1: For each non-script programming language: Number of programs originally prepared (progs), number
of subjects that voluntarily participated a second time one year later (second), number of programs that did not
pass the acceptance test (unusable), and final number of programs used in the study (total). For each script
programming language: Number of programs submitted (progs), number of programs that are resubmissions
(second), number of programs that could not be run at all (unusable), and final number of programs used in
the study (total).

language | progs second unusable total
C 8 0 3 5

C++ 14 0 3 11
Java 26 2 2 24
Perl 14 2 1 13
Python 13 1 0 13
Rexx 5 1 1 4

Tcl 11 0 1 10
Total 91 6 11 80

At severa points| will also provide confidenceintervals, either on the differencesin meansor on the differences
in logarithms of means (that is, on the ratios of means). These confidenceintervals are computed by Bootstrap-
ping. They will be chosen such that they are open-ended, that is, their upper end is at infinity. Bootstrappingis
described in more detail in [8].

Note that due to the caveats described in Section 3 all of these quantitative statistical inference results can
merely indicate trends; they should not be considered precise evidence.

For explicitly describing the variability within one group of valueswe will use the bad/good ratio: Imagine the
data be split in an upper and alower half, then the bad/good ratio is the median of the upper half divided by the
median of the lower half. In the boxplot, thisis just the value at the right edge of the box divided by the value
at the left edge. In contrast to a variability measure such as the standard deviation, the bad/good ratio is robust
against the few extremely high values that occur in our data set.

5.2 Number of programs

As shown in Table 1, the set of programs analyzed in this study contains between 4 and 24 programs per
language, 80 programs overall. Theresultsfor C and Rexx will be based on only 5 or 4 programs, respectively,
and are thus rather coarse estimates of reality, but for all of the other languages there are 10 or more programs,
which is a broad-enough base for reasonably precise results. Note that the sample covers 80 different programs
but only 74 different authors.

5.3 Runtime

All programs were executed on a 300 MHz Sun Ultra-Il workstation with 256 MB memory, running under
SunOS 5.7 (Solaris 7); the compilers and interpreters are listed in Table 2

5.3.1 Total: z1000 data set

The global overview of the program run times on the z1000 input file is shown in Figure 1. We see that for
all languages afew very slow programs exist, but except for C++, Java and Rexx, at least three quarters of the
programs run in less than one minute.



14 5 RESULTS

Table 2: Compilers and interpreters used for the various languages. Note on Java platform: The Java eval-
uation uses the JDK 1.2.2 Hotspot Reference version (that is, a not performance-tuned version). However,
to avoid unfair disadvantages compared to the other languages, the Java run time measurements will reflect
two modifications where appropriate: First, the JDK 1.2.1 Solaris Production version (with JIT) may be used,
because for short-running programs the tuned JIT is faster than the untuned Hotspot compiler. Second, some
programs are measured based on a special version of the java.util.Vector dynamic array class not enforcing
synchronization. This is similar to java.util. ArrayList in JDK 1.2, but no such thing was available in JDK 1.1 with
which those programs were written.

language compiler or execution platform
C GNU gcc 2.7.2
C++ GNU g++2.7.2
Java Sun DK 1.2.1/1.2.2
Perl perl 5.005_02
Python python 1.5.2
Rexx Regina 0.08g
Tcl tcl 8.2.2
| | | |
fo P— |
..... T
I I I I
0 20 40 60
| | | | | |
e =
..... ]
o o o , -Q;;”cl; --------- L 0

256 1024 4096



53 Runtime 15

In order to see and discriminate all of the data pointsat once, we can use alogarithmic plot asshown in Figure 2.
We can make severa interesting observations.

e The typical (i.e,, median) run time for Tcl is not significantly longer than that for Java (one-sided
Wilcoxon test p = 0.21) or even for C++ (p = 0.30).

e Don't be confused by the median for C++. Since the distance to the next larger and smaller points is
rather large, it is unstable. The Wilcoxon test, which takes the whole sample into account, confirms that
the C++ median in fact tends to be smaller than the Java median (p = 0.18).

e The median run times of Python are smaller than those of Rexx (p = 0.024), and Tcl (p = 0.047).
e Themedian run times of Perl are also smaller than those of Rexx (p = 0.018), and Tcl (p = 0.002).

e Except for two very slow programs, Tcl and Perl run times tend to have a smaller variability than the
run times for the other languages. For example, a one-sided bootstrap test for differencesin interquartile
range of logarithmic run times (i.e. differences in box width in Figure 2) between Perl and Python
indicatesp = 0.15.

Remember not to over-interpret the plots for C and Rexx, because they have only few points.?

If we aggregate the languages into only three groups, as shown in Figure 3, we find that the run time advantage
of C/C++ is not statistically significant: Compared to Scripts, the C/C++ advantage is accidental with proba-
bility p = 0.15 for the median and with p = 0.11 for the log mean (viat-test). Compared to Java, the C/C++
advantage is accidental with p = 0.074 for the median and p = 0.12 for the log mean.

,,,,, wed |
W YL ) Tho o

4 16 64 256 1024 4096

p = 0.11). A Javaprogram must be expected to run at least 1.22 times
aslong as a C/C++ program. Thereis no significant difference between average Java and Script run times.

5.3.2 Initialization phase only: z0 data set

We can repeat the same analysis for the case where the program only reads and stores the dictionary — most
programs also do some preprocessing in this phase to accelerate further execution. Figure 4 shows the corre-
sponding run time.

2Regarding the performance of Rexx, participant lan Collier pointed out that the otherwise high performance Regina interpreter
suffers from its fixed hashtable size for the phonecode problem, because the default size of 256 is too small. Increasing this value to
8192 (which requires recompiling Regina) reduced the run time of Collier's Rexx program from 53 seconds down to 12.



16

5 RESULTS

e I e S o
L Mg I o
[ | | | | |
2 4 8 16 32 64

e The median run time for Tcl islonger than that for Python (p = 0.10), Perl (p = 0.012), and C (p =
0.099), but shorter than that of Rexx (p = 0.052).

e The median run times of Python are smaller than those of Rexx (p = 0.007), and Tcl (p = 0.10). They
even tend to be smaller than those of Java (p = 0.13).



5.4 Memory consumption 17

--------------- [V
o [ | 0
0
....................... VI
° |_ og o o
.......... M---- |
o ’8 | o °
M-
& ? ogac® 0 °0 50| g o o ©o
S VI
o 9 di o
----------------------------- M----- |
4 1 1o

4 16 64 256 1024 4096

16 64 256 1024 4096

e Themedian run times of Perl are smaller than those of Rexx (p = 0.018), Tcl (p = 0.012), and even Java
(p = 0.043).

e Althoughit doesn’t look like that, the median of C++ isnot significantly different from any of the others
(two-sided tests yield 0.26 < p < 0.92).
The aggregated comparison in Figure 7 indicates no significant differences between any of the groups, neither
for the pairs of medians (p > 0.14) nor for the pairs of means (p > 0.20).

However, a bootstrap test for differences of the box widths indicates that with 80% confidence the run time
variability of the Scriptsis smaller than that of Java by a factor of at least 2.1 and smaller than that of C/C++
by afactor of at least 3.4.

54 Memory consumption

How much memory is required by the programs?
Figure 8 shows the total process size at the end of the program execution for the z1000 input file.

Several observations are interesting:

e The most memory-efficient programs are clearly the smaller ones from the C and C++ groups.

e Theleast memory-efficient programs are the clearly the Java programs.



18 5 RESULTS

o o O"x‘ﬁ o
o
r oou 7M7;3” H o
o 0O 0 4 ®o i-Mf;-(-% o OO‘U_| o o o
e ™ °
o -M-.”
I T T T I
0 20 40 60 80
| | | | |
0 i@' 0@“9-"‘;7& © EI o 8 o
o 00 |7o ) L] M; f;a o 00—0| o o o
k @.t;w 0 ;Jo o
I T T T I
0 20 40 60 80

e Except for Tcl, only few of the scripts consume more memory than the worse half of the C and C++
programs.

e Tcl scripts require more memory than other scripts.

e For Python and Perl, the relative variability in memory consumption tends to be much smaller than for C
and in particular C++.

e A few (but only afew) of the scripts have a horribly high memory consumption.

e On the average (see Figure 9) and with a confidence of 80%, the Java programs consume at least 32
MB (or 297%) more memory than the C/C++ programs and at least 20 MB (or 98%) more memory than
the script programs. The script programs consume only at least 9 MB (or 85%) more than the C/C++
programs.

| conclude that the memory consumption of Java is typically more than twice as high as that of scripts, and

scripts are not necessarily worse than a program written in C or C++, although they cannot beat a parsimonious
C or C++ program.

5.5 Program length and amount of commenting

How long are the programs?
How much commenting do they contain?



5.6 Program reliability 19

Figure 10 shows the number of lines containing anything that contributes to the semantics of the program in
each of the program source files, e.g. a statement, a declaration, or at least a delimiter such as a closing brace
(end-of-block marker).

0 100 200 300 400 500 600

o "0 |5 o
ol "MQ- o
| | | T
0 50 100 150
p = 0.020).

5.6 Program reliability

Do the programs conform to the requirements specification?
How reliable are they?



20 5 RESULTS

Each of the programs in this data set processes correctly the simple example dictionary and phone number
input file that was given (including a file containing the expected outputs) to al participants for their program
development.

However, with the large dictionary woerter2 and the partially quite strange and unexpected “ phone numbers’ in
the larger input files, not all programs behaved entirely correctly. The percentage of outputs correct is plotted
in Figure 12.

0 20 40 60 80 100
| | | | | | |
) S |
,M,|
8 o
—————————————— 4«1 . 4&

I T T T T T I
97.0 97.5 98.0 98.5 99.0 99.5 100.0

p < 0.0004 for the median, p < 0.04 for the mean). These differences, however,
all depend on just afew programs showing one or the other out of a small set of different behaviors and should
hence not be over-generalized. On the other hand, since these differences show exactly the same trend as the
fractions of highly faulty programs mentioned above, there is good evidence that this ordering of reliability
among the language groups in the present experiment is real. Remember that the advantage of the scripts may
be due to the better test data available to the script programmers.

It isvery instructive to compare the behavior on the more evil-minded input file m1000, again disregarding the
programs already known asfaulty as described above. The m1000 input set al so contains phone numberswhose



57 Worktime 21

length and content is random, but in contrast to z1000 it even allows for phone numbers that do not contain any
digits at all, only dashes and slashes. Such a phone number always has a correct encoding, namely an empty
one?, but one does not usually think of such inputs when reading the requirements. Hence the m1000 input file
tests the robustness of the programs. The results are shown in Figure 14.

0

3Note that thisis arguable. See Appendix B



5 RESULTS

o ;g-uM--- o o
o o “ ----- ) Q
Am ]d
&
8 o %o g u.-ﬂ-";"M‘";c- o o o
N T .
o -Qh-M-" - o

5 10 15 20 25

5 10 15 20 25



57 Worktime 23

Table 3. Excerpt from Capers Jones’ programming language table for the languages used in this study. LL is
the language level and LOC/FP is the number of lines of code required per function point. See the main text
for an explanation.

language | LL LOC/FP
C 35 91
C++ 6 53
Java 6 53
Perl 15 21
Python — —
Rexx 7 46
Tcl 5 64

LOC asaninput and predicts both cost and schedule. Various so-called cost drivers allow adjusting the estimate
according to, for instance, the level of domain experience, the level of programming language experience, the
required program reliability etc. However, the level of programming language used is not one of these cost
drivers, because, as Boehm writes, “ It was found [...] that the amount of effort per source statement was
highly independent of language level” [3, p.477]. He aso cites independent research suggesting the same
conclusion, in particular a study from IBM by Walston and Felix [20].

The second is Capers Jones language list for the Function Point [ 1] method. Function Points are a software size
metric that depends solely on program functionality and is hence independent of programming language [2].
Jones publishes alist [5] of programming languages, which indicates for each language LOC/FP (the number
of linestypically required to implement one function point) and the so-called language level LL, a productivity
factor indicating the number of function points that can be realized per time unit T with this language: LL =
FP/T. T depends on the capabilities of the programmers etc. In thislist, LL is exactly inversely proportional
to LOC/FP; concretely LL-LOC/FP = 320, which is just a different way of saying that the productivity of
any language is afixed 320 LOC per fixed time unit T. Independent studies confirming language productivity
differences with respect to function points per time have aso been published, e.g. [12]. Table 3 provides the
relevant excerpt from the language table and Figure 17 relates this data to the actual productivity observed in
the present study.

language list

actual

0 5 10 15 20

median work time



24 5 RESULTS

Arao[boo0s
[} o o L4 @ ) lo [}

oo bologodee, o T T 1o o6

ooreY]oon
) ® o i} o
..... Mo--mmnn

g o
I I I I I
0 20 40 60 80
| | | | |

cofboo

00 @I’ &0 |® % o 80 08 o0 o 0 0 %% o%0 o

QO 00
oo#ommo"é’ooﬂ of o0 0 o o %o

0.07 < p < 0.10.

Even in the aggregated view (Figure 19) with its much larger groups, the difference between C/C++ and scripts
is not significant (p = 0.22), only the difference between Java and scriptsis (p = 0.031), the difference being
at least 5.2 LOC/hour (with 80% confidence).

5.7.3 Conclusion

This comparison lends a lot of credibility to the work time comparison shown above. The times reported for
script programming are probably only modestly too optimistic, if any, so that a work time advantage for the
script languages of about factor two holds.

Figure 20 shows the same data as a two-dimensiona plot including a regression line that could be used for
(logarithmically) predicting work time from expected size. The higher productivity of the script languages
shows up as a trend line lying lower in the plot. The C/C++ line is steeper than the others, which in this
logarithmic plot shows non-linear increase of effort: programs that are twice as long take more than twice
as much work time. This is probably due to the fact that the best C/C++ programmers not only were more
productive but also wrote more compact code.



5.8 Program structure 25

64 128 256 512

1 1 1 1 1 1
Java Script

o
o r=059 | r is the correlation co-

E— T T — T T T T T T T T . : -
o 128 256 512 o 128 256 512 efficient of the logarithmic data.

5.8 Program structure

If one considers the designs chosen by the authors of the programsin the various languages, thereis a striking
difference.

Most of the programmersin the script group used the associative arrays provided by their language and stored
the dictionary words to be retrieved by their number encodings. The search algorithm simply attempts to
retrieve from this array, using prefixes of increasing length of the remaining rest of the current phone number
asthe key. Any match found leads to a new partial solution to be completed later.

In contrast, essentially all of the non-script programmers chose either of the following solutions. In the simple
case, they simply store the whole dictionary in an array, usualy in both the original character form and the
corresponding phone number representation. They then select and test one tenth of the whole dictionary for
each digit of the phone number to be encoded, using only the first digit as a key to constrain the search space.
Thisleadsto asimple, but inefficient solution.

The more elaborate case uses a 10-ary tree in which each node represents a certain digit, nodes at height n
representing the n-th character of aword. A word is stored at a node if the path from the root to this node
represents the number encoding of the word. Thisis the most efficient solution, but it requires a comparatively
large number of statements to implement the tree construction. In Java, the large resulting number of objects
also leads to a high memory consumption due to the severe per-object memory overhead incurred by current
implementations of the language.

The shorter program length of the script programs can be explained by the fact that most of the actual search
is done simply by the hashing algorithm used internally by the associative arrays. In contrast, the non-script
programswith their array or treeimplementationsrequire most of these mundane elementary steps of the search
process to be coded explicitly by the programmer. This is further pronounced by the effort (or lack of it) for
data structure declarations.

It is an interesting observation that despite the existence of hash table implementationsin both the Java and the
C++ class libraries none of the non-script programmers used them (but rather implemented a tree solution by
hand), whereasfor almost all of the script programmersthe hash tables built into the language were the obvious
choice.

5.9 Testing two rulesof thumb

Having so many different implementations of the same requirements allows for anicetest of two common rules
of thumb in programming:

e Thetime/memory tradeoff: To make a program run faster, one will often need to use more memory.



26 5 RESULTS

e The elegance-is-efficient rule: A shorter (in terms of lines of code) solution to the same problem will
often also run faster than alonger one.

tel
4096 — -
1024 — -
256 — -
64 o
16 — -
4 — -
python rexx
- — 4096
- (0] (0] (0} - 1024
1 - 256
— ~ 64
] [ 16 r denotes the cor-
relation (computed on the logarithms
of the values). Note the logarithmic
4096 — -
1024 L axes.
256 — -
64 — -
16 — -
4 — -

4 8 16 32 64 4 8 16 32 64

1 1 1 1 1 1 1 1 1 1
Script




5.10 Programmer self-rating 27

python rexx
- - 4096
-+4-0...0 o - 1024
i - 256
] F0 R — - 64
- = Qi - - 16
_ oo o - L.
r=0.17 r=1
C++ Java
4096 | -
1024 o] TR 0. 0450 L
256 o P -
64 — 00 o) ~ 80% -
16 0/ o @m& -
4 _e o0 -6
-7 09=82 r=-0.34
T

T T T T
64 128 256 512

64 128 256 512
| | | | | | |

1 1
C/C++ Java chpt
4096 — -
1024 00
256 o 00/0, r denotes
64 ‘\Q)/\ the correlation (computed on the log-
7 0 arithms of the values). Note the loga-
4 - . .
.7 98(-)03)81 r=-0.34 f=0.47 rithmic axes.
T T T T T T T T T T T T
64 128 256 512 64 128 256 512

5.10 Programmer self-rating

The non-script programmers were asked several gquestions about their previous programming experience, as
described in detail in [17]. Unfortunately, none of these questions had much predictive value for any aspect of
programmer performance in the experiment, so | will not delve into this data at all.

The script programmers were asked but a single question:

# Overall | tend to rate nyself as follows conpared to all other programmers
# (replace one dot by an X)

# anmong the upper 10 percent

# upper 11 to 25 percent

# upper 25 to 40 percent

# upper 40 to 60 percent

# |l ower 25 to 40 percent

# lower 11 to 25 percent

# | ower 10 percent

On this scale, the programmers of as many as 14 of the scripts (35%) rated themselves among the upper
10 percent and those of another 15 (37.5%) among the top 10 to 25. The programmers of only 9 scripts
(22.5%) rated themselves lower than that and 2 (5%) gave no answer. Across languages, there are no large
self-rating differences. If we compare the sets of self-ratings per language to one another, using a Wilcoxon



28 6 CONCLUSIONS

Rank Sum Test with normal approximation for ties, no significant difference is found for any of the language
pairs (0.58 < p < 0.94).

Asfor correlations of self-rating and actual performance, | found that higher self-ratings tend to be somewhat
associated with lower run time (asillustrated in Figure 25; the rank corrélation is -0.33) and also with shorter
work time for producing the program (Figure 26; the rank correlation is -0.30).

4 16 64 256 1024 4096

e Designing and writing the program in Perl, Python, Rexx, or Tcl takes only about half as much time as
writing it in C, C++, or Java and the resulting program is only half aslong.

e No unambiguous differencesin program reliability between the language groups were observed.



29

e The typical memory consumption of a script program is about twice that of a C or C++ program. For
Javait is another factor of two higher.

e For the initialization phase of the phonecode program (reading the 1 MB dictionary file and creating the
70k-entry internal data structure), the C and C++ programs have a strong run time advantage of about
factor 3 to 4 compared to Java and about 5 to 10 compared to the script languages.

e For the main phase of the phonecode program (search through the internal data structure), the advantage
in run time of C or C++ versus Javais only about factor 2 and the script programs even tend to be faster
than the Java programs.

¢ Within the script languages, Python and in particular Perl are faster than Rexx and Tcl for both phases.

e For al program aspects investigated, the performance variability due to different programmers (as de-
scribed by the bad/good ratios) is on average about as large or even larger than the variability due to
different languages.

Due to the large number of implementations and broad range of programmers investigated, these results, when
taken with a grain of salt, are probably reliable despite the validity threats discussed in Section 3. However,
it must be emphasized that the results are valid for the phonecode problem only, generalizing to different
application domains would be haphazard.

Itislikely that for many other problemsthe resultsfor the script group of languageswould not be quite as good
asthey are. However, | would like to emphasize that the phonecode problem was not chosen so as to make the
script group of languages ook good — it was originally developed as anon-trivial, yet well-defined benchmark
for programmers’ ability of writing reliable programs.

| conclude the following things:

e Asof JDK 1.2.1 (and on the Solaris platform), the memory overhead of Javais still huge compared to C
or C++, but the run time efficiency has become quite acceptable.

e The often so-called “scripting languages’ Perl, Python, Rexx, and Tcl can be reasonable alternatives to
“conventiona” languages such as C or C++ even for tasksthat need to handle fair amounts of computation
and data. Their relative run time and memory consumption overhead will often be acceptable and they
may offer significant advantages with respect to programmer productivity — at least for small programs
like the phonecode problem.

e Interpersona variability, that is the capability and behavior differences between programmers using the
same language, tends to account for more differences between programs than a change of the program-
ming language.

A Raw data

Below you find the most important variables from the raw data set analyzed in this report. The meaning of the
variablesis (left to right): subject ID (person), programming language (lang), run time for z1000 input filein
minutes (z1000t), run time for zO input file in minutes (z0t), memory consumption at end of run for z1000 input
file in kilobytes (z1000mem), program length in statement lines of code (stmtL), output reliability for z1000
input filein percent (z1000rel), output reliability for m1000 input file in percent (m1000rel), total subject work
time in hours (whours), subject’s answer to the capability question “I consider myself to be among the top X
percent of al programmers’ (caps).



30

person
s018
s030
s036
s066
s078
s015
s020
s021
s025
s027
s033
s034
s042
s051
s090
s096
s017
s023
s037
s040
s043
s047
s050
s053
s054
s056
s057
s059
s060
s062
s063
s065
s068
s072
s081
s084
s087
s093
s099
s102
s149101
s149102
s149103
$149105
s149106
s149107
s149108
s149109
s149110

| ang z1000t zOt z1000mem stmntL

O0O000

C++
C++
C++
C++
C++
C++
C++
C++
C++
C++
C++
Java
Java
Java
Java
Java
Java
Java
Java
Java
Java
Java
Java
Java
Java
Java
Java
Java
Java
Java
Java
Java
Java
Java
Java
per|
per |
per|
per |
per|
per |
per|
per |
per|

0.
. 050
. 900
. 750
. 050
. 050
. 983
. 867
. 083
. 533
. 033
. 400
. 033
. 150
. 667
. 917
. 633
. 633
. 283
. 317
. 200
. 467
. 200
. 267
. 700
. 350
. 467
. 150
. 783
. 800
. 333
. 467
. 200
. 100
. 200
. 150
. 267
. 100
. 267
. 167
. 267
. 400
. 083
. 200
117
. 350
. 483
. 167
. 200

w w
CO0OO0OO0O0OO0OO0OPFrRPOO0OONODOOOPFRFPFPOWPRAMROOPFRPOOOMNOOMNOOFRPROOPRPOPFRPOMPRLROOOODO

017

0.
. 033
. 000
. 467
. 050
. 050
. 550
. 017
. 083
. 000
. 033
. 033
. 033
. 033
. 033
. 017
. 433
. 650
. 100
. 283
. 017
. 117
. 167
. 100
L7117
. 067
. 000
. 050
. 100
. 067
. 450
117
. 050
. 067
. 150
. 133
. 083
. 050
. 217
. 150
. 183
. 417
. 067
. 100
. 033
. 333
. 433
. 133
. 133

eNeoNeoNeoNeoNoNoNoNoNoNoNoNolNoNoNoNeoNolNoNoNoNoNoNolNoNoNeoNeolh VileoolNoNeoNolNoloNoNoNeoNoNolNolNoNoNolNolNolNo)

017

22432
16968
11440

2952
22496
24616

6384

5312
28568

3472
23336

6864
22680

3448

4152

5240
41952
89664
59088
56376
36136
54872
58024
52376
27088
22328
38104
40384
29432
38368
38672
49704
40584
52272
79544
65240
39896
41632
70696
51968
17344
73440
25408
31536
17480
17232
73448
17312
17232

380
244
188
237
302
374
166
298
150
378
205
249
243
221
511
209
509
384
364
212
164
166
186
257
324
232
434
147
281
218
155
427
107
365
614
338
322
179
228
130

60

62

49

97

65
108

74
141
114

z1000r el
98.
76.

0.
98.
99.
99.
98.
100.
99.
98.
99.

0.
100.
100.
98.
100.
100.

7.
100.
100.
98.
100.
100.
99.
100.
100.
100.
100.
98.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

0.
99.

0.
100.
100.
99.
100.
100.
100.
99.

10
47
00
48
24
24
48
00
24
09
24
00
00
00
48
00
00
60
00
00
85
00
00
62
00
00
00
00
85
00
00
00
00
00
00
00
00
00
00
18
24
00
00
00
24
00
00
00
24

nmLo0Or el
96.8 16.
92.1 4.
89.5 8.
100.0 7.
98.4 10.
100.0 11.
98.4 3.
98.4 19.
98.4 3.
100.0 25.
98.4 10.
1.1 7.
100.0 11.
98.4 15.
100.0 19.
100.0 6.
10.2 48.
98.4 7.
10.2 18.
98.4 5.
90.9 8.
10.1 6.
10. 2 4.
10.2 63.
10.2 18.
100.0 18.
10.2 17.
10. 2 7.
96.3 27.
10. 2 3.
100.0 7.
97.9 39.
10.2 15.
100.0 7.
10.2 26.
100.0 9.
100.0 19.
10. 2 9
98.4 3
6.6 8
100.0 1
0.0 1
100.0 1
100.0 3
100.0 6
100.0 2
100.0 2
100.0 3
100.0 5

A RAW DATA
whour s caps
10 ??
00 ?7?
20 ??
30 ?7?
90 ??
20 ?7?
00 ?7?
10 ??
50 ?7?
30 ??
10 ?7?
50 ??
90 ?7?
20 ??
60 ?7?
90 ??
90 ?7?
10 ?7?
00 ??
00 ?7?
70 ??
20 ?7?
80 ??
20 ?7?
80 ??
10 ?7?
80 ??
40 ?7?
60 ?7?
80 ??
30 ?7?
70 ??
10 ?7?
80 ??
60 ?7?
70 ??
70 ?7?

. 80 ??
. 80 ?7?
. 20 ?7?
.08 0-10%
.67 10-25%
.58 NA
.17 0-10%
.17 0-10%
.50 0-10%
. 83 10-25%
.67 25-40%
.00 10-25%



s149111
s149112
$149113
s149114
$149201
5149202
$149203
$149204
s149205
$149206
$149207
$149208
$149209
$149210
s149211
$149212
s149213
$149301
$149302
$149303
$149304
$149401
$149402
$149403
$149405
$149406
$149407
$149408
$149409
$149410
s149411

per |
per|
per |
per|
pyt hon
pyt hon
pyt hon
pyt hon
pyt hon
pyt hon
pyt hon
pyt hon
pyt hon
pyt hon
pyt hon
pyt hon
pyt hon
r exx
r exx
r exx
r exx
tcl
tcl
tcl
tcl
tcl
tcl
tcl
tcl
tcl
tcl

(o]

\'

NN

N
o
QO OVWOMNOOOOOORFRPFRPUIODOOFRRFONOOOOOOPRrRrROONOO

N

. 267
. 250
. 500
. 333
. 650
. 583
. 183
117
. 083
117
. 133
. 450
. 300
. 250
. 483
. 617
. 733
. 817
. 400
. 000
. 000
. 650
. 567
. 617
. 967
. 650
. 783
. 800
. 683
. 400
. 467

el NeNeoNoNeoNeoNoNoNoNoNoNolNoNoNeol JloloNolNoNoNoNoNol NelelNolNolNo)

. 233
. 233
. 300
. 233
. 317
. 367
. 167
. 067
. 067
. 067
. 067
. 367
. 500
. 200
. 150
. 467
. 533
. 300
. 900
. 950
. 433
. 567
. 433
. 517
. 667
. 583
. 467
. 633
. 567
. 433
. 367

17224
17576
20320
21896
22608
17784
13664
13632
17336
17320
15312
16024
14632
17480
91120
14048
14000

8968
21152
21144

9048
32400
29272
28880
44536
26352
17672
48840
23192
20296
21448

80
66
121
74
82
61
79
60
78
42
114
94
119
225
82
84
52
53
203
191
53
62
78
144
98
105
44
173
70
240
135

100.
100.
100.

99.

99.

99.
100.
100.
100.
100.
100.

99.
100.
100.

98.

99.

99.
100.

44.

99.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

00
00
00
24
24
24
00
00
00
00
00
24
00
00
48
24
24
00
75
62
00
00
00
00
00
00
00
00
00
00
00

100.
98.

98.
100.
98.
100.
100.
10.
100.
100.
98.
0.
10.
10.
100.
100.
98.
46.
98.
100.
100.
100.
100.
100.
100.
100.
100.
100.
10.
100.

O NOOOOCOCOOOOOOCLWOoOPMMOoOONMNNMNOPMMNOOMNMNODOPMOPMOPMDO

=

=

. 00
.25
. 00
.00
. 00
.58
.77
.43
.50
. 50

83

. 20
.83
. 50

00

. 00

32

.93
. 00
.00
. 00

83

. 00
.50
.75
. 38
. 60
.00
. 00
.00
.50

10-25%
10-25%
60- 75%
25-40%
10-25%
NA
0-10%
0-10%
0-10%
40- 60%
0-10%
25-40%
10-25%
0-10%
40- 60%
0-10%
60- 75%
10-25%
10-25%
10-25%
10-25%
10-25%
0-10%
10-25%
25-40%
10-25%
0-10%
0-10%
0-10%
40- 60%
10-25%

31

The reliability values of 98% and higher for z1000rel occur due to some very subtle 1/0O issues when the
programs are executed in the test harness (where output is to a pipe rather than to aterminal). These programs
should be considered correct.

The reliability values of 98% and higher for m1000rel occur due to two minor ambiguities in the task specifi-

cation as described in the following appendix. These programs should be considered correct.

B Specification ambiguities

In the process of discussing the m1000 results of two almost correct programs with their authors, two minor
ambiguities were found in the task specification.

1. A phone number without digits was expected to result in an empty encoding (like this: * * - -/ :
because the specification says“ exactly each encoding that [...] matches the phone number exactly shall
be printed” . However, one may argue that such output should be suppressed, because the specification
also says “ Encodings of phone numbers can consist of a single word or of multiple words separated by
spaces! .

),



32 B SPECIFICATION AMBIGUITIES

2. These empty encodings were expected to have a space character after the colon, just like longer encod-
ings, because the specification says: “ print the phone number followed by a colon, a single(!) space,
and the encoding on oneline;” . However, the specification continues “ trailing spaces are not allowed
hence one may consider an output without this space more appropriate.



REFERENCES 33

References

[1]

(2]

(3]
[4]

(]

6]
[7]

(8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Allan J. Albrecht and Jr. Gaffney, John E. Software function, source lines of code, and development effort
prediction: A software sciencevalidation. | EEE Transactionson Software Engineering, SE-9(6):639-648,
November 1983.

Charles A. Behrens. Measuring the productivity of computer systemsdevel opment activitieswith function
points. |EEE Transactions on Software Engineering, SE-9(6):648-652, November 1983.

Barry W. Boehm. Software Engineering Economics. Prentice Hall, Englewood Cliffs, NJ, 1981.

Jean-Pierre Briot, Rachid Guerraoui, and Klaus-Peter Lohr. Concurrency and distribution in object-
oriented programming. ACM Computing Surveys, 30(3):291-329, September 1998.

Software Productivity Research Capers Jones. Programming languages table, version 7.
http://www.spr.com/library/Olangtbl.htm, 1996 (as of Feb. 2000).

Edsger W. Dijkstra. Go To statement considered harmful. Communications of the ACM, 1968.

Alireza Ebrahimi. Novice programmer errors. Language constructs and plan composition. Intl. J. of
Human-Computer Sudies, 41:457-480, 1994.

Bradley Efron and Robert Tibshirani. An introduction to the Bootstrap. Monographs on statistics and
applied probability 57. Chapman and Hall, New York, London, 1993.

Les Hatton. Does OO sync with how we think? |EEE Software, 15(3):46-54, March 1998.

Paul Hudak and Mark P. Jones. Haskell vs. Ada vs. C++ vs. awk vs. ...an experiment in software
prototyping productivity. Technical report, Yale University, Dept. of CS, New Haven, CT, July 1994.

Watts S. Humphrey. A Discipline for Software Engineering. SEI seriesin Software Engineering. Addison
Wesley, Reading, MA, 1995.

Rabert Klepper and Douglas Bock. Third and fourth generation language productivity differences. Com-
munications of the ACM, 38(9):69-79, September 1995.

Jurgen Koenemann-Belliveau, Thomas G. Mohrer, and Scott P. Robertson, editors. Empirical Studies of
Programmers: Fourth Workshop, New Brunswick, NJ, December 1991. Ablex Publishing Corp.

John A. Lewis, Sallie M. Henry, Dennis G. Kafura, and Robert S. Schulman. On the relationship be-
tween the object-oriented paradigm and software reuse; An empirical investigation. J. of Object-Oriented
Programming, 1992.

George A. Miller. The magic number seven, plus or minustwo. The Psychological Review, 63(2):81-97,
March 1956.

Michael Philippsen. Imperative concurrent object-oriented languages. Technical Report TR-95/50, Inter-
national Computer Science Institute, University of California, Berkeley, CA, August 1995.

Lutz Prechelt and Barbara Unger. A controlled experiment on the effects of PSP training: Detailed
description and evaluation. Technical Report 1/1999, Fakultét fur Informatik, Universitat Karlsruhe, Ger-
many, March 1999. ftp.ira.uka.de.

D.A. Scanlan. Structured flowcharts outperform pseudocode: An experimental comparison. |EEE Soft-
ware, 6:28-36, September 1989.



34 REFERENCES

[19] Richard M. Shiffrin and Robert M. Nosofsky. Seven plus or minus two: A commentary on capacity
limiations. Psychological Review, 101(2):357-361, 1994.

[20] C.E. Walston and C.P. Felix. A method of programming measurement and estimation. IBM Systems
Journal, 16(1):54-73, 1977.



